Wetenschap
Martijn Middelkamp Foto Reyer Boxem

Inzoomen tot op de nanometer

Kraak het virus

Martijn Middelkamp Foto Reyer Boxem
Terwijl de strijd tegen corona nog volop bezig is, werkt biofysicus Martijn Middelkamp aan de bestrijding van wat een ‘stille pandemie’ wordt genoemd: hepatitis B. Hij onderzoekt de groei van virussen met een van de sterkste microscopen ter wereld.
11 oktober om 12:49 uur.
Laatst gewijzigd op 29 november 2023
om 15:44 uur.
oktober 11 at 12:49 PM.
Last modified on november 29, 2023
at 15:44 PM.
Avatar foto

Door Rob van der Wal

11 oktober om 12:49 uur.
Laatst gewijzigd op 29 november 2023
om 15:44 uur.
Avatar foto

By Rob van der Wal

oktober 11 at 12:49 PM.
Last modified on november 29, 2023
at 15:44 PM.
Avatar foto

Rob van der Wal

Rob begon als student-redacteur bij UKrant en is sinds mei 2023 terug als vaste medewerker. Hij schrijft nieuwsberichten, achtergrondartikelen – met een voorkeur voor wetenschap – en houdt zich bezig met internationaliseringszaken. Daarnaast werkt Rob als freelance wetenschapsjournalist. In zijn vrije tijd is hij drummer, radiomaker en moestuinier.

De microscoop van biofysicus Martijn Middelkamp ziet er indrukwekkend uit met zijn draadjes, elektronische onderdelen en knopjes. Heel wat anders dan de huis-tuin-en-keukenmicroscopen van de biologieles op de middelbare school. ‘Gelukkig hoefde ik dit systeem niet zelf van de grond af op te zetten’, grapt Middelkamp.

De microscoop bevat een geavanceerd stukje software dat hem in staat stelt om virussen zoals het coronavirus, tot in het kleinste detail te bekijken. Geen apparaat dat iedereen in zijn woonkamer heeft staan dus. 

Capsiden

Martijn Middelkamp is promovendus in de moleculaire biofysicagroep van Wouter Roos aan het Zernike Institute for Advanced Materials. Het belangrijkste onderdeel van ‘zijn’ microscoop is superklein: een pennetje of ‘tip’ van een paar micrometer – miljoenen keren dunner dan een haar. In het ideale scenario is het uiteinde van die tip zelfs maar één atoom dik.

Voor hem is het werken met de microscoop tegenwoordig dagelijkse kost. Het apparaat is namelijk onmisbaar bij zijn zoektocht naar de groei van capsiden: een soort balletje dat als een jas om een virus heen zit. Niet voor niets wordt het balletje ook wel eiwitmantel genoemd.

Je kunt een medicijn in een viruscapside naar een plek in het lichaam brengen

Weten hoe dat balletje groeit, is handig voor medicijnontwikkeling. ‘Als je bijvoorbeeld een manier vindt om de groei te blokkeren met een bepaald molecuul of medicijn’, zegt Middelkamp, ‘dan kun je daarmee een medicijn ontwikkelen. Maar je kunt het viruscapside ook gebruiken om een medicijn in te stoppen en naar een specifieke plek in het lichaam te brengen.’

Golflengte

Het is niet makkelijk om de groei van het capside te bekijken, vertelt Middelkamp. Een virus is zo verschrikkelijk klein dat je het niet eens kunt zien op een normale microscoop, die met gewoon licht werkt. ‘Je kunt best ver inzoomen’, zegt hij, ‘maar op een gegeven moment bereik je een grens.’

Dat komt omdat licht bestaat uit golven. En die golven hebben een bepaalde lengte. Is een voorwerp korter dan die golf, dan kun je het niet zien. En omdat gewoon licht een minimale golflengte van een paar honderd nanometer heeft, kun je een virus dat slechts enkele nanometers groot is, onmogelijk waarnemen.

Tenzij je de High Speed Atomic Force Microscope (HS-AFM) inzet, want die gebruikt geen licht om een voorwerp te bestuderen, maar tast.

Dit is nog niet eerder gedaan met zo’n microscoop

De fragiele tip van de microscoop glijdt over de groeiende verpakking van het virus, als een naald die over een steeds groeiend minigebergte schuift. ‘Steeds als de punt een  onderdeel van het virus tegenkomt, buigt het armpje waaraan de punt zit door. Een laser meet de doorbuiging, en daaruit wordt de hoogte van het oppervlak afgeleid’, zegt Middelkamp.  

Foto Reyer Boxem

Spikes

Dankzij de AFM kan hij zelfs kleine uitsteeksels op een virus, de zogenaamde spikes, waarnemen. ‘En die spikes zijn maar één nanometer hoog. We kunnen dus echt op absurde schaal dingen bekijken.’ 

Maar het aftasten moet dan wel héél voorzichtig gebeuren. ‘Als je met de punt over zo’n virus heen scant, dan kun je het capside naar de zijkant drukken, of erop tikken en hem kapot maken’, zegt Middelkamp. En dus zorgt elektronica in het apparaat ervoor dat het tikken zo zacht mogelijk gebeurt.

Overigens is het niet altijd slecht dat de virusverpakking kapot gaat. ’Je kunt de virusverpakking ook expres kapot tikken met de microscoop. Dan kun je het uiteenvallen direct bekijken.’ Ook dat levert nuttige informatie op over de structuur van het virus.

Op dit moment ligt het hepatitis B-virus onder Middelkamps microscoop. Hij tast de driehoeken, vijfhoeken en zeshoeken van het eiwit af die, als de lapjes van een voetbal, samen het virusballetje vormen. Als een stukje eiwit niet goed past, weet Middelkamp, dan laat het weer los, waarna het een nieuwe plek ‘uitzoekt’, net zolang totdat het stabiel is. 

Puzzel

Foto Reyer Boxem

‘Dat gaat niet per losse eiwitbouwsteen, maar in grotere gedeelten: bijvoorbeeld in één keer zo’n driehoek of zeshoek.’ Als een puzzel die zichzelf legt.

‘Het vormen van één zo’n virusballetje duurt maar een paar seconden’, legt Middelkamp uit. ‘In die tijd kan ik dertig tot zestig plaatjes van het puzzelproces maken.’ Vervolgens plakt hij de plaatjes achter elkaar, zodat er eigenlijk een video ontstaat van de groei van de capside. ‘Dat is nog niet eerder gedaan met zo’n microscoop.’

Middelkamp kijkt naar hepatitis B omdat het een vrij simpel virus is, In tegenstelling tot covid-19 (om maar eens een virus te noemen). Het bestaat uit 240 losse puzzelstukjes, allemaal gemaakt van hetzelfde eiwit. Het capside van het covid-19 bestaat uit minstens 2400 eenheden: tien keer zoveel, dus. HIV zit daar ergens tussenin met duizend tot vijftienhonderd stukjes, maar die bestaan uit twee soorten eiwit.

Simpel virus

De principes die de eiwitten volgen om zichzelf in elkaar te puzzelen, zijn wel grotendeels hetzelfde. En dus is het slimmer voor Middelkamp om eerst een eenvoudig virus te bestuderen, dan een complexe variant. ‘Pas als we precíes weten hoe de opbouw van de verpakking bij een simpel virus gaat, zijn de complexere soorten aan de beurt’, zegt hij.

Voorlopig is dat zijn eerste doel: alle verschillende puzzelstukjes goed in beeld krijgen. Daarna wordt het moeilijker, dan gaat hij het groeiproces proberen te beïnvloeden. ‘Dan verander ik de eigenschappen van de vloeistof waarin het eiwit zit.’

Het is superklein, maar het beïnvloedt de hele wereld

Kiest hij de goede omstandigheden, dan groeien de eiwitten uit tot een structuur zoals het capside. Anders zal de groei uitblijven. ‘Niet alle methoden zijn even efficiënt. In sommige gevallen duurt het langer om alle puzzelstapjes te maken.’ 

Gefascineerd

De kennis die hij zo opbouwt is essentieel als je met capsiden nanomaterialen wilt ontwikkelen. Nanomaterialen op basis van eiwitten zijn namelijk lichaamsvriendelijk en daardoor goed te gebruiken in de medische wetenschap.

Maar dat is voor Middelkamp niet het belangrijkste. Hij is vooral gefascineerd door de kleine dingen waarmee hij nu al werkt. ‘Het blijft mij verbazen dat we in staat zijn om individuele moleculen te bekijken en daarmee te kunnen werken. En hoe die moleculen een rol spelen in het dagelijks leven.’ Zoals het coronavirus: ‘Het is superklein, maar het beïnvloedt de hele wereld.’

Engels